Tutorial for TestConductor for Rhapsody in Java

Rhapsody

Rhapsody in Java
Tutorial

for

= IBM® Rational® Rhapsody”
—_ ® TestConductor Add On

Rhapsody

License Agreement

No part of this publication may be reproduced, transmitted,
stored in a retrieval system, nor translated into any human or
computer language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual or otherwise,
without the prior written permission of the copyright owner,
BTC Embedded Systems AG.

The information in this publication is subject to change without
notice, and BTC Embedded Systems AG assumes no
responsibility for any errors which may appear herein. No
warranties, either expressed or implied, are made regarding
Rhapsody software including documentation and its fitness for
any particular purpose.

Trademarks

IBM® Rational® Rhapsody®, IBM® Rational® Rhapsody®
Automatic Test Generation Add On, and IBM® Rational®

Rhapsody® TestConductor Add On are registered trademarks
of IBM Corporation.

All other product or company names mentioned herein may be
trademarks or registered trademarks of their respective
owners.

© Copyright 2000-2016 BTC Embedded Systems AG.
All rights reserved.

TestConductor for Rhapsody for Java

In this tutorial we would like to give you an
impression of the Rhapsody Testing
Environment, which goes beyond current
embedded software testing technologies; it
ensures that the system can be continuously
tested throughout the design process. The
Testing Environment and its parts seamlessly
integrate in Rhapsody UML and guide the user
through the complex process of test
preparation, execution and result analysis.

TestConductor is the test
execution and verification engine in
the Rhapsody Testing Environment. It
executes test cases defined by
sequence diagrams, statecharts, and
source code. During execution
TestConductor verifies the results
against the defined requirements.

Rhapsody® Automatic Automatic Automatic

UML Testing Test Test Case Test Case

Architecture

Profile Generation Generation Execution

IBM® Rational® Rhapsody® Testing Environment

StopWatch Application

The StopWatch application, the example

Java application for this tutorial, models a simple
stopwatch. Make yourself familiar with the use cases of the
application. Open the project ,JavaStopWatch” from the
folder ,Samples/JavaSamples/TestConductor® in your
Rhapsody installation, run the component
«StopWatchComp», and use the following input:

Object: S kophas atch(0]

Event: evkey v

Arguments:

[

: To start the application, press “Go” in
By

Rhapsody’s animation toolbar.

i Object: S bopie atch[0]
1zhar
ol BVt [eukey 3 To start the stopwatch, generate event
Arguments: “evKey(1)” using the animation toolbar.
[oo KE: To stop the stopwatch, generate event
“evKey(1)” again using the animation toolbar.
Hiztary:

5 topta atch[0]-

0. When running, the stopwatch outputs the

elapsed time in minutes and seconds to the
console. Each second is printed twice, one time
with a colon and 0.5 seconds later without a
colon, similar to a stopwatch with blinking colon.

(oo] ()

n n n n
PP R e Gl G0 Pl Dol bk =k (20 130 (2D

4

StopWatch Model

The StopWatch model contains the
StopWatch class and its three parts. The first part is a

Stopwateh ~ button that can be used to start and stop the stopwatch.
—_— The second part is the timer that is used in order to count
L LpButor the elapsed t!me. The Fhll’d part is the dlsplay that displays
] I o weveeneervas Tt B the elapsed time. Within the stopwatch the different
SKeySendiey P B e components are connected via ports and links.

|Buttan| = mincint

iDissey| Breceips Additionally, the stopwatch class itself relays both the
1 itsDisplay:Displa & 5 o - =
Display] ot - start/stop button and the display to its boundaries in order
opWatchOu Out ispla
[~ R i to be able to connect an external start/stop button and an
IDisplay| IDisplay @ShowTime(mein.. |Display externa| display -

The myStopWatch class represents a
oy StomWateh = sample instantiation of the StopWatch class. It
connects a stopwatch to an external key “myKey”

! Mellyieymykey that can be used as a start/stop button.
1 o 0
e Additionally, it connects the stopwatch to an
Bpresskey(key. | 7 external display “myDisplay” that displays the
nEtopWWatchin | 1 itsStopWWatch: StopWatch .
_@# elapsed time.
IKey
pStopWatchOut
1 jtshyDisplay: myDispla: IDisplay
pi
[

IDizplay

System Under Test

Entire Model Yiew ~ |
B8]) aStopia

WSSt ik

Jaw!
w1

StopiAiatch
amponents

Defining the System Under Test (SUT) is the first [g
_step in the test workflow. This tutorial will focus on the

2 Szmpso e e StopWatch class. To define StopWatch to be the SUT, we
et) E?E%fﬁéﬂfiiﬂfmp have to create a test architecture. The needed
H RequirementsPkg T DefaultConfi
s B - @ TestComporents administrative framework will be placed in the folder
e ot) + %Tc_at _pln_of_Stopiwatch «
N s il 5 g, TC_at_pOUt_of_Stopiwiatch ,1estPackages”.
i o S oty wath
= (1 Companents = on_stophia)
FH D = o Lrks | The System Under Test (SUT) is a part and
=, Defaultconfig ! !tsStDpWah:h_!tsTC_at _pIn_of_Stopiwatch . .
T s g e Pt HSTC_a pOof Stpikiateh is the component being tested. A SUT can
e L e arams consist of several objects. The SUT is exercised
_;@q&gﬁﬁ%:&ﬂ:ﬁ;ﬁéz . ﬁ⋙“;;;z;ﬁ;—;mwmh via its public interface operations and events by
- St & oo ot the test components.
= @ TestComporentistance = "); Testzonfigurations
P ", DefauliCoriig
=%y TestConfigurations A I
2y, DefaultConfig

/

\

and choose from context
menu ,Create

\

=-E7 StopWatchPkg
—15 Classes

Select the class
~StopWatch® in the browser

TestArchitecture”.

/

-

_

=9 TestContexts

=4 TCon_Stopivatch 1 «EUT»
L Links itsStopbvatch: StopWatch
= 4 SUTs

=i Test Context Diagrams

+ ‘ TestComponentInstances pInT pOutT
+- %y, TestConfigurations

u TestContesds
TCon_StopWatch

i itsStophiatch

e Siruchure of Toon Stopbatch

Have a look on the newly created Test Context Diagram
.Structure_of TCon_StopWatch “, and view the resulting parts in
the composite class ,TCon_StopWatch® of our test context.

Test Architecture

q
ﬁ

ﬁ

=% TPkg_StopWatch

=~ Components
= §l|/ TPkg_StopWatch_Comp
=10 Configurations

—_j TestComponents
= 3 TC_at_pIn_of_StopWatch
G Ports
...... @ pln
} TC_at_pOut_of_StopWatch
(= Generalizations
Lo o IDisplay
: = Ports

152 Statechart
=- 5',?3 TestContexts
= & TCon _StopWatch
ExR B Links
—--4 5UTs
- oyl itsStopWatch
= i‘i Test Context Diagrams
= #1 Structure_of_TCon_StopWatch
—‘ TestComponentlnstances
: ----- z itsTC_at_pln_of_StopWatch
: itsTC_at_pOut_of_StopWatch
=} q‘;, TestConfigurations
------ 2y, TestConfiguration

- By «AnimationBasedTestingConfiguration= DefaultConfig

The automatically created test architecture is
completely represented in the browser and seamlessly
integrates into Rhapsody; think of it as an independent test
model besides the design model. After creation the
following elements are visible:

The new configuration under the component
»1 Pkg_StopWatch_Comp* initializes the test
components and SUT objects and their
interconnections when a test case is started.

A test component is a class of a test system.
Test component objects (test component
instances) realize partially the behavior of a test
case. A test component might have a set of
interfaces via which it might communicate via
connections with other test components or with
SUT objects.

A test context describes the context in which
test cases are executed. It is responsible for
defining the structure of the test system. The test
components and SUT objects are normally parts
of a test context.

Test Context

The automatically created test context represents .
the formal structure of the test system. TestConductor
analyzed the model structure in consideration of the
e — selected SUT and proposed a test structure, which is
LT E visualized in the test context diagram inside the test
context. TestConductor generated corresponding test
components for ports and associations of the SUT.

1 wSUTe
itsStopWatch:StopWatch

The composite class ,TCon_StopWatch® is
the part container for the SUT object and the
created test component objects.

pln pOut
The class ,TC_at_pln_of StopWatch®
realizes the interface ,|IKey" and thus can be
connected to the “plIn” port of the stopwatch
ol pOut class that provides this interface.
#STC_at_pln_of STCat_pOut. The class ,TC_at pOut_of StopWatch”

provides realizations for the interface “IDisplay”
and thus can be connected to the “pOut” port of
the stopwatch class.

Adjusting Test Architecture

EIEI InterfacePkg
= Events
- evPressKey(int KeyVal)
-1 evReset()
= evShow(int m,int 5,bcolean b)
“- T evStartStop()
EI[E- Interfaces
E IButton

- IDisplay

#-= IKey

To use events which are defined in other

= _:i TestZomponents
=g TC_at_pIn_of_Stopwatch
="+ Dependencies
W8} :I/sage= InterfacePkg
=0 Paorts
=1 TC_at_pOut_of_Stopwatch
="+ Dependencies
WYY «Iisage= InterfacePkg
‘T Generalizations
=0 Paorts
(&) Statechart

= 33 TestContexks

=19 TCon_Stopiatch

="+ Dependencies

= _j TesbZomponents

Dependency for ,TC _at _pln_ of _
StopWatch“ and set the
dependency to InterfacePkg.

o Select Add New->Relations->

L

M| «lsages InkerfacePkg

packages we have to set a usage
dependency. Otherwise the events will not be
found if referred to from another package.

4 N

= gh TestComponents
= 1gh TC_at_pIn_of_StopWwakch
="+ Dependencies
*s) InterfacePkg

Dependency : InterfacePkg in TC_at_pIn

Gereral | Description | Tags | Properties

MName: InterfacePkg
Stereotype: Uzage
Depends InterfacePkg

Double click InterfacePkg
and set the Stereotype of
the dependency to Usage.

o /

=3 TestPackages
=- L% TPko_Stopiwatch
D Components
= _j TesbZomponents

% '

= 33 TestContexts
g TCon_Stopitatch

Repeat the same steps for
e “TC_at_pOut_of StopWatch’

and “TCon_StopWatch”.

/

Test Cases

Test cases are the soul of a test system. Until now we created a complete test
architecture around the SUT with a few mouse clicks in less than a minute. The
established and reviewed test system is linkable and runable. Well, the body works,
let’s have a look at the test cases. A test case ...

Is a specification of one case to test the system
including what to test, with which inputs, and what the
expected outcomes are. It is defined in terms of stimuli
injected to SUT objects and observations coming from
SUT objects.

Is an operation of a test context that specifies how a
set of cooperating test components interact with the
SUT.

can be specified as sequence diagrams, statecharts,
and source code.

can be generated automatically by using
TestConductor’s test case wizard.

can be recorded as animated sequence diagrams.

can be created by hand.

Test Case Specification

How to manually create test cases and how to execute them
with TestConductor will be discussed in the following sections. The

3Ty
TCon_Stopwy TCon_Stopwy TCon_Stopwy
atch.itsTC_at atch.itsStop atch.itsTC_at
_pln_of_Stop YWatch: StopWy _pOut_of_Sto
| | |
| | evShowm=0,5=0, b= false) |
I I I
fitsTCan.rte_init();
festConductor ASSERT _MAME("Initial" true);
¥
final_state

Test Case : Check_SetTime in TCon_StopWatch

General | Description | Implementation | Argumerts | Relations | Tags | Properties

void Check_SetTimel)

oo l// Check that initiglly the time is 0:0

01 int mins = itaStopWatch.getMin():

02 int secs = itsStopWatch.getSec():

03 TestConductor.AZSERT NAME ("Check initial time", ((mins =

05 // now set time to 05:21 and check that setting of time
08 // the correct time

07 itsStopWatch.setTime (3,21);

058 mins = itsStopWatch.getMini):

092 secs = itsStopWatch.getIec():

10 TestConductor.ASSERT_NAME ("Check if time setting is corr
11 [imins == 3) && (secz == 21])])

- different kinds of definitions have their own strengths:

Sequence diagram test cases can be recorded
automatically or created by hand. In some cases they have
already been specified during the analysis phase of the
project, and define the actions and reactions of the SUT.
The graphical formalism boosts the readability and
understanding.

Statechart test cases are a well known and convenient
means to specify behavior based on states and modes.

Source code test cases are often preferred by
experienced programmers.

In summary TestConductor, the Rhapsody test case
execution engine, works with all kinds and combinations of
test case definitions.

|

Test Case: Sequence Diagram |

B TestScenario: Checklnit in TPkg_Sto... [= |[B|X]

To manually create a sequence diagram

-

TCan_.Stop'Watch | . TC at pln_of Sto.| ..TC_at pOut . : .
e = —— — test case we have to define a test scenario
st which is represented as a sequence diagram
TCon_Stopw TCon_Stopw TCon_Stopw and link it to a test case. TestConductor
e Sty %a*pﬁ:”fgt—;; ‘% ot of Gio simplifies this process with a single command.
| | |
| | |
|
| | # 4 Test Context Diagrams
| | =%, TestCases
| | =% to_check_init)
: ! Bl Shlnstances
= _Ei TestScenarios
N E—'llp CheckInit
N N N
=59 TestContexts) 5%, TestCases
= TCon Stopiwatch Create SD TestCase 5 X, P—p——
; ;‘G[‘;_E; Create Flowchart TestCase . SDInstances
b4 Test Context Diagrams Create Code TestCase == Tllascenarins
‘ TestComponentinstances Create Statechart TestCase - E:S Checklnit
%y TestConfigurations
and choose from the Rename the test case to
Select the test con"[‘e.xt e context menu .Create SD ,tc_check_init*. Rename the
»1Con_StopWatch® in the TestCase" ” test scenario to ,Checklnit*
Rhapsody-Browser ...)L - PN and open it.)

|

Test Case: Sequence Diagram li

=57 RequirementsPkg
=l (= Requirements
10| REQ_Init
|t J] REQ_Running_1
|t J] REQ_Running_2

[[1] REQ_SetTime Nane: RECL_Init
[1) REQ_Stopping Stereotype: 5 @t
S Type Fiequirement v

57 SystemPlg
£ TutarialPkg ID:
[Profiles
=53 TestPackages
=D TPkg_StopWatch

Defined in:

Specification:

Requirement : REQ_Init in RequirementsPkg

General | Description | Relstions | Tags | Properties

E3]E5]

() Components
2 Events
[Ohjerts

Locate Ok
=-E® TestPackages

After starting the stopwatch, the stopwatch
shall display 0 minutes and O seconds (0:0). b

=g TCon_Stopwwatch_architecture
=4 Dependencies
% TestComponents
=59 TestContexts
=49 TCon_Stopwwiatch
(2 attributes
(22 Dependencies
(25 Links
(3 statechart
o SUTs
3 Test Context Diagrams
=% TestCases
=% SD_tc_00
EY sDinstances
=-b, TestObjectives
b REQUINI

/

= ’L: TestCases

SR e
.

OfflineTestResult
‘ TestObjective

TestScenario

Select the test case and
select “Add New ->
TestingProfile ->
TestObjective”

test case.

Determine the test objective of the test
case: the SD test case should check that
requirement “REQ_Init” is indeed fulfilled by

the stopwatch class. To make explicit that the
SD test case shall verify this particular
requirement, a test objective is added to the

Depends on: - -
T Select Model Element X
=B Reguiraments -
N

Ei REQ_Running
EY REQ_Stopping
£ stopwatchPka v

[o« |

‘

Cancel |

Select requirement “REQ_ Init”
as target of the test objective”

/

-

o

=%, TestCases

=R tc_check_init
E_';', S0Instances

=Wl TestObjectives
d, EER

By TestScenarios

The test objective now links

the test case to the
requirement “REQ_Init”.

%

Test Case: Sequence Diagram lil

B TestScenario: Checklnit in TPkg_StopWat... [= |[B]X]

| evshowim=0,s5=0b= trueJ

|

TCon_...StopWyatch LTC at_pln_of Stophd) LTC at_pOut.
23T
TCon_StopW TCon_Stopih TCon_StopW
atch.itsStop atch.itsTC at atch.itsTC_at
YWWatch: Stophhy _pln_of_Stop _pQut_of_Sto

Define action and reaction of the
system under test. We will specify the
,Checklnit“ scenario, where the SUT shall
emit event “evShow” with current time 0:0
after starting the SUT. This output shall
be generated automatically by the SUT,
since no further input is needed for that.

<
«5UTs]

TCon_Stopvy TCon_Stopvy TCon_Stopvy SUT

atch.itsStop atch.itsTC_at atch.itsTC_at il Ll

Watch: Stopi _pln_of_Stop _pOut_of_Sto TCon_Stop¥ TCon_Stop¥ TCon_Stop/

atch.itsSta atch.its at atch.its at
‘ ‘ T h.itsStop h.itsTC_ h.itsTGC_
‘ ‘ ‘ | E'I.I'SI"ID'I.I'I.I'l:rT'I =0 =0 h=tr E»J Watch: StopWy _pln_of_Stop _pCQut_of_Sto
i i | |

‘evShow(m=D,s=D,b=trueJ‘ ‘ |
?-_ Features... L——._.AL | I |
\ + | v evShaow(int, int boolean) evShow(m =0, s =0, b= trug)
I

Draw the message
“‘evShow” from the SUT to
the test component
“TCon_StopWatch.itsTC at

Specify argument values

m =0, s =0, b = true for the
e message.

Out of StopWatch”.
_p _Ol_otop)

o

/

o

That's it already. The test
case specification is
complete.

Test Case Execution |

Execute the test case with Rhapsody TestConductor. ||
The execute dialog lists all executed test scenarios, their
progress and status.

The status, the final result can be either

|] ,PASSED" or ,FAILED".
YD f_@: {}
Narne Status File/lte... | Ling/Progress The progress displays how many steps are
- ¥, t_check_init €3 FAILED finished yet. In case of a passed test 100% have
Fp SD_tc 0 @ FalLED 1 0% (0/2) to be achieved.
The buttons in the top right corner of the
execution dialog can be used to control actual
test case execution and will be explained later.
/—w TCon_Stopiiatch B \ / =% JestCases \
+ I_‘ Links) ‘Testcamponenﬂnstances
¥ {‘ SUTs TestConductor #- %y, TestConfigurations
&g Test Context Diagrams = %;gsﬁcef;?“tﬂs
=%, TestCases — B TestCase must be built before execution. Build and Execute now? e
‘ TestCumpDnenﬂ Features... 2%
"""""""""" Edit TestCase SDInstances OK l [Abbrechen DJOR)
Update TestCase _Nimi: —_— gtih:?LED File/te... | Line/Progress
Build TestCazse L |:'.:| [FalED
Execute TestCase
To execute a test case, simply right-click the test case and select The test case execution
“Execute TestCase” from the context menu. In case the test model dialog is a dockable dialog
0 needs to be updated and/or the tested executable needs to be e that can be placed e.g.
compiled, a popup window appears in order to update the test case underneath the main

_ and/or build the executable.

/

browser window

Test Case Execution I

TCon_StopW® TCon_Stopyy TCon_Stopyy
atch.itsStop atch.itsTC_at atch.itsTC_at
Watch: Stopy _pln_of_Stop _pOut_of Sto

ev3how(m=0,s=0 b=true) |
e

evshow(m=0 s=0 b=false): Event Sending - F'arame.ug; values do not match.
|

The test case execution FAILED with
Rhapsody TestConductor. To analyze the

- reason TestConductor offers two kind of

views. The HTML-report displays a textual
summary and can be found directly under the
test case in the Rhapsody-Browser.
ATestConductor created a witness sequence
diagram to display the error. The red arrow
visualizes the faulty step and the reason.
TestConductor expects the parameter value

| bt of d: “ TR
e : ,TRUE* for argument “b”, but observes the
Total number of SD instances in test: 1 « .)
Total Muber of executed S0 Ietaries: 0 value ,FALSE" during actual test execution.
The expected value was not specified
correctly... by accident.
4 N [N w
21 15 Elﬂ % TestCases)
DROE <3 Y VS i %, -
Marne Status Fi... Line/Progress Name Status Fi... | Line/Progress + 5; ?;;kséutcgs
-1%, tr_check_init €3 FAILED =% to_check_init @ FAILED w4 Testobiectives
Mo o0 K FaeD 1 0% (02) =5 TestResults
Show as SD B 1 Con_ Stopti
add to rodel L B 5‘—'5 TestScenarios

To open the witness
sequence diagram right

the TestConductor
_ execution dialog... AN

0 click the item SD tc 0in e ... and select “Show as SD”. the generated html report'

In the browser, underneath
the test case, you can find

Double click the report to
open it.

NS /

Test Case Execution lll

The test execution PASSED with

Rhapsody TestConductor after we corrected

=l
IOE the expected parameter value for argument “b”
Sy— —— 2| Uneieaaress from true” to false” in the test scenario
S%, tr_check_int & PASSED ,Checklnit®. After changing the scenario and
Eyso o @ PASSED 1 100% (2/2) re-executing the test case, the test case is
passed.
Refer to the user guide to get
familiar with the extended functionality
of TestConductor.
a N 2 N
" TestScenario: Checkinit in TPkg_Stop... [= B
= “:"_ 13: h k . t TCon_....Stopatch LT at_pln_of St L TC at pOut.. R 3
- FJ_E eck_init{) o e
- SDinstances TCon_StopWy TCon_StopWy TCon_StopWy #61 b
+ E:l TEStDI‘:IjEEti'I.I'ES atch. itsStop atch.itsTC_at atch.itsTC_at MHarme Status =T YProgress
4 5¢ TestResults Wamh:|81°pw *pm‘fﬁmp *pomffﬁm -, tc_check_init @ PASSED
= % TestScenarios | ‘ | Bysomwo (@ Passep 1 100% (2/2)
- % I:I‘-Elj:ﬂﬂit evShowm 0,5s=0,b= false)‘ |
r\%
To correct the test case For argument “b”, change the Re-execute the test case by
open the test scenario exptected value from “true” to pressing the “Start” button in
Checklnit* “false”. the top right corner of the
" ' execution dialog.
\ NG O\ %

Test Case: Source Code |

Test Case : Check_SetTime in TCon_StopWatch *

General | Description | Implementation | Arguments | Fielations | Tags || Properties

woid Check_SetTime[]

00 // Check that initially the time is 0Q:0

01 int wins = itsStopWatch.getMin():;

02 int secs = itsStopWatch.getlec():

03 TestConductor.A3SERT NAME ("Check initial time",

o4 [(mins == 0) && (secs == 0)])):

as

06 // now set time to 35:21 and check that setting of time indeed sets
07 // the correct time

08 its3topWatch.setTime (3,21);

09 mins = its3topWatch.getMin()

10 secs = itsStopWatch.getSec ()

11 TestConductor.A3ISERT_NAME ("Check if time setting is correct',

To manually create a source code test

case create a code test case and write the
test code into the edit field under the
implementation tab of the test case.
TestConductor provides a set of functions like
e.g. ,lestConductor. ASSERT_NAME" that
can be used to execute checks during test
case execution. If the function “setTime” (line
08) of the stopwatch works as expected, the
test case passes.

1z [(mins == 3) &£& (secs == 21))]:
< — >
Locate [8]4 Appl
(e B9 TestContexts i N N [Ce e N
=] & TCon_Stopbvatch _) Elg:l TEUtD FIE”:'kg
: ; ;‘S';SS =%, TestCases E'[f CIES_’F‘EZC .
i = L tc
+ &g Te Create SD TestCase * “:" D:_EhEEk_IIt EI TestC_asv.;Oass
=-#, Tt Create Flowchart TestCase Ea 4 t':':hE”j:: _tirne()

LT

Create Code TestCase

T
+ ‘ Te Create Statechart TestCase
%y, Test_onngurations

o Select the test context e Rename the created test
,1Con_StopWatch” and
choose from the context
menu ,Create Code dialog.
TestCase®.

case to ,tc_check_time*
and open the features

EI[B Operations

=L ime)

Replace the content of the
edit field under the
implementation tab of the test
case with the content from the

“tc_check_time” operation in
VAN the Tutorial package.)

Source Code Test Case: Execution

o ff Execute the test case with Rhapsody
T n r.
Marme Status File/Tteration | Line estCo dU('..:tO
“1%, tr_check_time © PASSED Both assertions evaluate to .tru.e and the
I3) check initial time @ PASSED TCon Sto.. 141 I test case Passes. unble-cllcklng an
I5) Check if time setting is correct @ PASSED Toon S, 142 ||| €valuated assertion in the execution
window highlights the assertion in the test
e e) — | model.
05 mwmins = itsStopWatch.gecMin)
09 secs = itsStopWatch.get3ec():
I Te=t Conductor, AS3ERT WNAME ("Check if time setting is correct™,
11 [{mins == 3] && (secs == 21))):
< >
Locate oK,
- a | N N
= LCE Edit TestCase SDInstances = LCE Ed:; TestCase SDinstances
+ + Update TestCase Marme Status
- Update TestCase - _
Y Build TestCase “ 4 pyild TestCase - % tr_check_time @ PASSED
i TE—— ! ;‘E Execute TestCase {1 Check inital time O Passn
o-%®, Execute TestCase - E HEBLLS lSsu-EiRs ol ——
+ % tC_check_init #-% to_check_init()
SRRt Check time() = &Rt check_time()

Select test case
“tc_check_time” and then
select “Build TestCase”
from the context menu.

/

Select test case

»IC_check _time“ and select
“Execute TestCase” from
the context menu.

o

In the execution window,
select the assertion and click
“Show Assertion” in order to
highlight the assertion in the
model.

/

Test Case: Statecharts |

This is a statechart defining TestCase behavior

In Statechant TestCases you can use ASSERT macros
TestConductor ASSERT_NAME(n), e.g.
TestConductor ASSERT_NAME("Check_1", att
For the list of available macros see TestConduc
or the TestConductor java file in the installation

initial

fitsTCon.re_init();

¥
state_1

(- 99 TestContaxts
= % TCon_Stopliatc

h

Create SD TestCase
Create Flowchart TestCase
Create Code TestCase

Create Statechart TestCase
Update TestContext

Select the test context
,1Con_StopWatch® and
select “Create Statechart
TestCase”.

D j TestComponents
& j «SCArbiters TCSC_te_ 0
{ [g Asszociation Ends
[5 Operations
l @ Statechart
- (2 Tags
- % TC_at_pIn_of StopWatch
#-gh TC at _pOut_of_StopWatch
95‘3 TestContexts
Bﬁ'ﬁ' TCon_StopWatch
B [Cg Dependencies
l [g Links
l ,‘. SUTs
G-k Test Context Diagrams
=% TestCases
x te_check_init)
- 2% tc_check progress()
C EI [c.‘/" Dependenr:|es

S < StatechartTestCases TCSC tc 0

=%, TestCases
+-# tr_check_initd)
R PR - Check piroc
#. tc_check time

Rename the test case to
“tc_check_progress”

To manually create a

statechart test case we have
to define a test scenario which
is represented as a statechart
and link it to a test case.
Technically, the test case has a
dependency to a
TestComponent that contains

the statechart. TestConductor

simplifies this process with a
single command.

e -

=-#. TestCases
%, tr_check_init()
= b:_cheu:k _progress()
+- "y Dependencies

=4 Teschiectwes

* tr_check_time()

e Add a test objective (using

“‘Add New -> TestingProfile
->TestObjective”) to
requirement REQ_Running_)

\

Test Case: Statecharts |l

]

initial

fitsTCon.rtc_init();

fif Chedk that initially the time is 0:0

int mins = itsStop\Watch. getMin();

int secs = itsStop\Watch.getSec();

TestConductor . ASSERT_MAME("Chedk initial ime™,
((mins == 0) && (secs == 0)));

\ state_3
state_4 em’/7
now start stopwatch

itsStop\Watch.getPIn().gen(new evPresskey(1));

state_1

Vitalize the statechart in order to execute it with
TestConductor. The statechart test case first checks
that initially the stopwatch’s time is indeed 0:0. After
starting the stopwatch, the statechart test case waits
a bit more than 3 seconds, and then checks that
indeed 3 seconds should be counted by the
stopwatch during that period. To execute the checks
the statechart test case uses the Rhapsody
TestConductor function

»1estConductor. ASSERT_NAME()“. This function
was already used for the code test case in order to
perform code based checks. If both checks are
passed, the complete test case is passed.

H v / H v \
/ = EI Tutu:nrlaIF'kg -_;i TestComponents \ __i TestCompeonents
=- 15 Classes -3 «SCﬂxrhiter» TC5C tc 0 i «SCArhitern TCSC_te 0
' % TCSC _tc 0 P 15' Association Ends - lg Aszociation Ends
E - 15- Aszociation Ends =l |£.f' Dependencies =E |£.f' Dependencies
T Dependencies - "y «llsagen InterfacePkg M = zagex InterfacePkg
4 % Operations - @ Operations - @ Operations
+@ "’ @ -f- {"2) Statechart
Add a <<Usage>>
Replace the content of the test component dependency from TSC_tc_0
statechart associated with this test case with to InterfacePkg because this
the statechart of the Tutorial package. test case is using events
defined in InterfacePkg.
_ Y. _ /

Statechart Test Execution

Execute the test case with Rhapsody
TestConductor. Both assertions evaluate to
true and the test case passes.

[ff Chedk that initially the time is 0:0

int mins = itsStopWatch. getMin(j);

int secs = itsStopWatch.getsec();

TestConductor, ASSERT_MAME(Chedk initial ime™,

2l ({mins == 0) && (secs == 0)));
SEOE N state_1 !
Marme Status File,/Tteration | Line state_3
- ¥, tr_rheck_progress 0) PASSED
Q Check initial time O FASSED TCSC_fo_... 403 T
Q Check elapsed time [©) PASSED TCSC_ t- ... 709
\ / Edit TestCase SDinstances \ / \
Update TestCase Liaille Sl
-1 ¥, t_rheck_progress @ PASSED

_

=%, TestCases
% to_check_init))
L - check progress()
% to_check_time()

Select the test case

»iC_check progress” ...

Build TestiCase

Ex Edit TestCase SDinstances
Update TestCasea
Build TestCase

Execute TestCase

... and choose from
context menu the items
,Build TestCase*

and ,Execute TestCase®.

/

@ PasSED

5] Check nitial time

In the execution window,
double click on the
assertion or right click on
it and select “Show
Assertion” in order to
highlight the assertion in

the model.

Create Test Cases Using Test Case Wizard - SDs

— e ——

To create a test case based on

craetetcne =) existing sequence diagrams,
mykey :StopWatch M:JinstanceIinestotestarchitecture Operations Or rGQUirementS, yOU
can use the TestConductor test case
Please select test architecture fortest case: o o o
<> wizard. For an existing sequence
evShow(m=0, 5=0, b: TCon StonWatch i .
diagram, the test case wizard creates
evPressey(KeyVal=1) an analogue test case with the same
message structure as the original
e Please select test case kind: Sequence dlagram
— For a requirement the test case wizard
creates a test case with the chosen
requirement as the test objective.
/ EI&I TutorialPkg Create Test Case \ / =% IESEESES) \
H-{E Classes _ . _ Ea4
E‘D Sequence Diaararme Map instance lines to test architecture £ SDII"IS'EEIII"IEE.S
: =M TestOhiectives
) - D:l] StupwEtchRunn|nq TCon_Stopi TCUn__Slup\N TCon_StopWy
] Flease select test architectune for best caze: f‘pﬁ';_“ni}ﬁ} V\a};ﬁﬂﬁtéﬁﬁﬁv f;%huf_s;fgf;
Rational Ehapsody Gateway Cnews, | I e, =0, sy }

Select the sequence
diagram
“StopWatchRunning” in the
tutorial package and select
“Create TestCase...”.

OK to proceed.
O\

e In the test case wizard

dialog, the test context
“TCon_StopWatch” is
already highlighted. Press

context structure.

As a result, a new testcase
e “SD_tc_0” has been created

which is based on a new test

scenario containing the same

messages as the original SD,
but life lines adapted to the test

%

Create Test Cases Using Test Case Wizard -

Operations

i = Requirements

The test case wizard can also be
used to test operations that are defined

=-£7 StopWatchPkg

Test Case: Code_tc_0 in TCon_StopWatch

= getSec()

Create TestZase. ..
0 Select operation
“setTime” of class
StopWatch in the browser

and select “Create
TestCase...”

in the model. The wizard allows to create
three different kinds of test cases:
sequence diagram test cases, statechart
test cases or code test cases.
Independent of the chosen kind of test
case, the created test case calls the

selected operation. Additionally, the test

case already contains a check that can be
refined by the user in order to check the

out values of the operation.

E!bg; Classes
% Button General I Description | Implementation |Arg|.|ments I Relations | Tags | Proper
#-E% Display
Elg StopWatch void Code_tc_O{)
E‘E D.ependencies In Code TestCasesz you can use ASSERT mac:
l= Links TestConductor.ASSERT NAME (n,2), e.q.
5 Operations // TestConductor.RSSERT_NAME ("Check_ 1", att:
: &= getMing) // For the list of available macros see Tesi
= getSec() '/ or the TestConductor.java file in the im:
: = setTimelint m,int s)
=
@D Parts int osc arg 1 =
b Ports int osc arg 2 =
_E.J---%.Tlmer) itsStopWatch.setTime (osc_arg 1, osc_arg 2):
Eg"'—' Object Model Diagrams TestConductor.ASSERT NAME ("Initial"™, true):
[#-5 SystemPkg -
=& StopWatch
YL |
% Links Flease select test caze kind:
== Operations
HFI ethMin() Code TestCase w
9 5D TestCaze

Code TestCaze
Statechart TestCasze

/

In the test case wizard
dialog, select “Code
TestCase” as test case
kind and press OK.

\

/EI *, TestCases
M Code_tc 00
=Wl TestOhjectives
Ll setTime

int osc_arg 1 = 0;
int osc_arg 2 = 0;
itsStopWatch.setTime (osc_arg 1, osc_arg 2);
TestConductor.ASSERT NAME ("Initial",true);

e As a result, a new code test

case has been created that
contains a call to operation
“setTime” and also a dummy

assertion that can be refined.

- /

Debugging Test Cases

Marmne Status Fil... Line/Progress
- ¥, SD_fc_0 EXECUTIMG
HpsD_tc_0 ACTIVE 1 25% (2/9)
TCon_Stophy TCon_Stophy TCon_Stophy
atch.itsTC at atch.itsStop atch.itsTC at
_pln_of_Stop Watch: Stoph _pOut_of Sto
[reset()
| show(min =10, sec =0, b = false) |
el O B e = ge T 4= 5]

=[x
ROkl

L,

evsShow(m =0, s =0, b = false) |
éhowTime[m =0,5=0,b=false)|

evShow(m =0, s =0, b = false)

Debugging failed test cases can also be
done with TestConductor. When a test case
fails, one can turn on debug execution mode in
TestConductor’s execution window. After
- switching on debug mode, when executing the
test case one can step through it by using the
| “Go Step”, “Go Idle”, etc. buttons of Rhapsody’s
animation toolbar. Additionally, when stepping
through the test case, one can use Rhapsody’s
animation features to inspect animated
statecharts, animated SDs, etc. in order to find
the reason why the test case fails.

=-*, TestCases) \ (- B
+-# Code_tc_00) ‘ﬂ DICIEY
.- : @r Mame Status Fil... | Line/Frogress
T 31:___ ir Dol o MHame Status Fil... Line/Progress -¥%, S0 EXECUTING

¥ Edit TestCase SDInstances -% st 0 £ FalLED B &0 tr 0 ACTIVE) 5% (@)
Update TestCase Hysp e FAILED 1 S0% (4/3)
Build TestCase Qe e | ® &P o [E]

Execute TestCase

E—
-

Select test case
“SD_tc_0” and select
“Execute TestCase”.

After the test case has
failed, turn on debug
execution mode by clicking
the debug button in the
execution dialog.

_

Execute the test case again by
pressing the “Start” button in the
execution dialog. Now you can
step through the test case by
using Rhapsody’s animation
toolbar.

%

Executing Multiple Test Cases

Executing multiple test cases can be

==
DROE < -
MNarme Status File/Tteration Line/Progress
-1 & TCon_StopWatch 3 FALLED
-¥, Code_tc D @) PASSED
£ tnitial @ PassED TCon_Stop... 132
-¥. SD_tc 0 3 FallED
By Dt o 3 FaILED 1 50% (4/8)
- ¥, tr_check_init @) PASSED
By ot o @ PassED 1 100% (2/2)
-1¥, tc_rheck_progress @) PASSED package
2] check initial tirme @ Pass e ==)
B) Chock elapsed tme. @ PASS Test Context: TCon_StopWatch
—¥%, tr_check_time @ Pasg| Code_tt D PASSED
2] Check initial time @ pPass| S0 0 FAILED
£ Chedk if time setti.. (@ PASS| to_check_init PASSED
tc_check_progress PASSED
tc_check_time PASSED
é - N /& 9 TestContexts
= g |[:|'|_."'._|'a pn = & TI:::|:|r| _Stopiiiatch
L, | inle 5 Links
g+ Creats Statechart TestCase b S\ Build TestContes:t
YR Update TestContext :’1 T8 P
EEY "~ Build TestContext = % Execute TestContext
'T‘v-;s‘fc_;:r Update TestContext @ 7. “Wndate TestArchitecture
Build TestContext *p TESTORTIGURATIONS

Execute TestContext

%y, TestCon
Select the test context
“TCon_StopWatch” and
select “Update

TestContext”. After that,

_ select “Build TestContext”.)

e Select the test context

again and press “Execute
TestContext”. All test
cases will be executed one

after the other.

done by executing a complete test context or
a complete test package. When a test context
or a test package is executed, all test cases
within the context or test package are
executed. After all test cases have been
executed, TestConductor computes an overall
test result for the test context or the test

\

~ A
Marme Status Fi
-1 & TCon_Stopiatch) FAILED
-1¥, Code_tc 0 @ PASSED
£+ nitial @ PASSED Td
-1¥, SD_t_D & FAILED
By sD o @ FalLED 1

The results are shown in the
execution window. As always,
“Show as SD” resp. “Show
assertion” can be used to
show the reasons of failed
test cases.

%

Assessing Test Case Requirement Coverage |

Which requirements are covered by

my test cases? This important question can
be answered either by using a test case
requirements matrix or by generating a
requirements coverage test report. A test case

requirements matrix shows the relationship

To: Requirement Scope: JavaStopiatch

between test cases and requirements in @ xemma gre B e a2 [B sy B R B P st
matrix view. A requirements coverage test 7\ e | N
report shows the same information, but B x tae
presented as a textual report. It can be »
generated by Rational Publishing Engine or by
ReporterPlus using a predefined template.
/— E], TES‘tF'EIEkEIES \ / Name: FeqCaoverage \ / \
= . e Stonhy otk g To: Requirement Scope: JavaStoplatch
EJ.'! TPkg_Stopwwatch Stereotype: v JE = : I e F!Eﬂilnit [B REQ_Fuming 2 |B) |
£ Companents s S c T 2 %, to_check_it Il REC_Init
3}, TestComponents i estequiementioversge n T B R 1%, te_check_tie -
Table Matrix Al TestRequirementatriz ;me'f JavaStopwatch 7 % : to_check_pragress
Annatations » TestResultTable i B Bl EEJ;CICD 0
TestingProfile » TestScenario ot i ‘ T
Scope: iavaStopWatch v
0 e Open the features dialog When double clicking the
Select the test package of the matrix, rename it to matrix in the browser, the
“TPkg_StopWatch” and “ReqCoverage”, and set matrix view shows the
select “Add New -> the “from” scope and the relationship between the test
TestingProfile -> “to” scope to the complete cases and the requirements.
TestRequirementMatrix”. “ ”
q) U model “JavaStopWatch”. /) U Y.

Assessing Test Case Requirement Coverage I

All Requirements

Name ID
REQ Init no id

REQ Running 1 no id

REQ Running 2 no id

Covered By Test Case

= tc check init
in TPkg_StopWatch:: TCon_StopW

PASSED for CG Configuration
TPkg_StopWatch:: TCon_StopWat

» tc_check progress
in TPkg_StopWatch:: TCon_StopW

not executed

= not covered

Test Case Reports can be used as an
alternative in order to figure out coverage of
requirements with the test cases. With
Rational Publishing Engine a requirement
coverage report can be generated in different
formats like Word, Html, etc. The
requirements coverage report shows the list
of requirements, their coverage by test cases
and the outcome of the test case execution.
The report also contains information about
the specification of the test cases.

W an N
ReportGenerator
Schemas
Rational Publishing Engine Templates | | TestRequirementCoverage.dta
v ATG
] Generate report... | ProjectContentReport
SoftwareDesignDescription
TestConductor
UPDMReport
From Rhapsody’s tools Sel h
0 menu, select “Rational e “Te eclt?t € c e
Publishing Engine* dte”St iQUIrtalrrler}t c;;]/erage_
-> “Generate Report...”. a aslempiate forthe
report to generate and click
Next in the following dialogs.
/ARG /L

Q IBM Rational Rhapsody Report GEI‘bEI‘c!tD)

Configure the Output

Select output types needed and optionally change
stylesheets and output paths

Output Type Output File
Word

V| Html
PDF
HslFo

Select the desired output
format, html for example, and
click on Finish. After generating
the report, the report can be
viewed with any browser that
can display Html files.

\

/

Assessing Test Case Model Coverage

Detailed Coverage Summary of Button (5/5)

Operations

State
Transit]

Transit]

State

Besides coverage of the requirements,
an important orthogonal information is which
parts of the model are executed by the test

cases, i.e, what is the achieved Model

ian

Transition
Transition
Configuration : DefaultConfig in TPlkg_StopWatch_Comp / \
-5 TestContexts
| General | Deeeription | Initialization | Settings | Checke | Relations | Tags SRR TCon Stopiiaich
Links
Use defautt order ; - '
= TestArchitecture i‘irl' Build TestContext
=l AnimationBased TestingConfiguration =% Execute TestContext
ComputeModelCoverage 1 .
ComputeRequirementCoverage D ‘ T Update TEStﬁ.rEhltEEtUrE
CoverageKind SUT_hierarchical q) TEesT_OnTIGUIrSTIONS
NoConsoleApp O

Open the features dialog of the
code generation configuration
and turn on tag
“ComputeModelCoverage” and
set tag “CoverageKind” to

“SUT _hierarchical’.

_

Execute the test context
“TCon_StopWatch”.

o Coverage when executing the test cases.
TestConductor can compute this information
during test case execution. When model
coverage computation is turned on, after test
case execution TestConductor adds a model
coverage report to the test cases, test contexts
etc. that shows the achieved model coverage.

Elffﬂ TCon_StopWatch

@ Attributes
E} Dependencies
[?:;—L Links

Elg ModelCoverageResults

B Co icpviatn meow 0.0l
@ Operations

-l SUTs

[H-&d Test Context Diagrams

EI---"‘V' TestCases

#. Code_tc_00)

EI.Q ModelCoverageResults

Q TCon_StopWatch_ Code_tc 0_mcov_0.html

After execution has finished,
model coverage reports can
be found both for individual
test cases as well as a
cumulative coverage report
for the test context.

/

Conclusion

The high-grade automation in the Rhapsody Testing Environment with

TestConductor

generates complete, immediately executable test
architectures in shortest time with a few mouse clicks.

makes it for the first time possible to implement cyclically
quality assurance measures in early phases of the
development.

increases substantially the planning reliability for
projects, because design errors and subsequent errors
will be recognized very early.

makes statements about the coverage rates for both the
model elements and model code. Developers can easily
and fast analyze reasons for not coved elements.

highly automates the testing process and can save test
development time compared to traditional approaches.

More Information ...

For further information, especially
technical news, visit our internet

L information portal or contact one of our
= =—==T= worldwide sale agencies.
N T ¥ E— %

IBM® Rational® Software Support provides you with technical assistance. The IBM Rational Software Support Home page for Rational
products can be found at

For contact information and guidelines or reference materials that you need for support, read the
For Rational software product news, events, and other information, visit the

Voice support is available to all current contract holders by dialing a telephone number in your country (where available). For specific
country phone numbers, go to

Before you contact IBM Rational Software Support, gather the background information that you will need to describe your problem.
When describing a problem to an IBM software support specialist, be as specific as possible and include all relevant background
information so that the specialist can help you solve the problem efficiently. To save time, know the answers to these questions:

* What software versions were you running when the problem occurred?

* Do you have logs, traces, or messages that are related to the problem?

* Can you reproduce the problem? If so, what steps do you take to reproduce it?

* Is there a workaround for the problem? If so, be prepared to describe the workaround.

http://www.ibm.com/software/rational/support/
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www.ibm.com/software/rational
http://www.ibm.com/planetwide

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31

